A new contention window scheme is proposed to incorporate the application dependency. In default scheme the contention window change is similar for all applications, it is not application dependent.

The basic idea of the proposed mechanism is that the change in contention window size is different for Real time applications and data traffic applications. The proposed mechanism improves the quality in terms of delay, jitter, and loss. The performance of the new scheme is also discussed with simulation results.

Default scheme:
For default increment scheme:
Contention window is getting doubled every time.
\[ i.e., \text{CW} = 2 \times \text{CW} \]
If \( \text{CW} > \text{CW}_{\text{max}} \),
then \( \text{CW} = \text{CW}_{\text{max}} \)
For default decrement scheme:
Contention window is resetting to its minimum.
\[ \text{CW} = \text{CW}_{\text{min}} \]

proposed scheme:
Increment formula is:
For Real time applications(UDP):
\[ \text{CW} = \text{CW} + 1; \text{ (modified formula)} \]
If \( \text{CW} > \text{CW}_{\text{max}} \)
\[ \text{CW} = \text{CW}_{\text{max}} \]
For Data traffic(TCP):
\[ \text{CW} = \text{CW} \times 2; \text{ (default formula)} \]
If \( \text{CW} > \text{CW}_{\text{max}} \)
\[ \text{CW} = \text{CW}_{\text{max}} \]
Decrement formula is:
For Real time applications(UDP):
\[ \text{CW} = \text{CW}_{\text{min}}; \text{ (default formula)} \]
For Data traffic(TCP):
\[ \text{CW} = \text{CW} - 1; \text{ (modified formula)} \]
If \( \text{CW} < \text{CW}_{\text{min}} \)
\[ \text{CW} = \text{CW}_{\text{min}} \]
Always \( \text{CW}_{\text{min}} \leq \text{CW} \leq \text{CW}_{\text{max}} \)

Below figure illustrates the growth of the contention window as the number of transmissions.

**Figure 1:** Contention Window in IEEE 802.11Std.

In proposed scheme:
Delay is decreased.
Jitter is decreased.
Loss is decreased.
Throughput is decreased.

Below graphs show the comparison between defaults, proposed schemes of QoS parameters for 5 node pairs.

Bibliography

1. An Adaptive Backoff mechanism to Guarantee Quality of Service in IEEE 802.11e Wireless Local Area Networks
   By, Kil-Woong Jang, Dept. of Applied Sciences, Korea Maritime University, Busan, Korea

2. 802.11 Wireless Networks -The Definitive Guide – by By Matthew Gast